The Network Of Knowledge

                Science   Technology   Engineering   Mathematics   History   Thought   Belief   The Modern World
                

                        Omnia Exeunt In Mysterium

Smallest-parts Functions for Partitions

George Andrews introduced the smallest parts partition function in [A08], where it was denoted by $spt(n)$ and defined to be the number of occurrences of the smallest part in all the partitions of $n$. For example, all occurrences of the smallest part in the partitions of 5 are marked below with a "." over them, \[ \dot 5, \quad 4+ \dot 1, \quad 3+\dot 2, \quad 3+\dot 1+ \dot 1, \quad 2+ 2+ \dot 1, \quad 2+ \dot 1+ \dot 1+ \dot 1, \quad \dot 1+ \dot 1+ \dot 1+ \dot 1+ \dot 1. \] Thus, counting the parts with a "." over them, it can be seen that $spt(5)= 14$.

One result given by Andrews in [A08] was a form for the generating function: \begin{equation}\label{spteq1} \sum _{n=1}^{\infty } spt(n)q^n=\frac{1}{(q;q)_{\infty }} \sum _{n=1}^{\infty } \frac{n q^n}{1-q^n} +\frac{1}{(q;q)_{\infty }} \sum _{n=1}^{\infty } \frac{(-1)^n q^{\frac{1}{2} n (3 n+1)} \left(1+q^n\right)}{\left(1-q^n\right)^2}. \end{equation} Implicit in the proof in [A08] was an alternative form of the generating function, \begin{equation}\label{spteq2} \sum _{n=1}^{\infty } spt(n)q^n= \frac{1}{(q;q)_{\infty }} \sum _{n=1}^{\infty } \frac{(q;q)_n q^{n} }{\left(1-q^n\right)^2}. \end{equation}

Similar to the congruences for the regular partition function $p(n)$ stated by Ramanujan, namely, that for all $k\geq 0$, \begin{align*} p(5k+4)&\equiv 0 (\mod 5),\\ p(7k+5)&\equiv 0 (\mod 7), \\ p(11k+6)&\equiv 0 (\mod 11), \end{align*} Andrews [A08] found three families of congruences for $spt(n)$: \begin{align}\label{spteq3} spt(5k+4)&\equiv 0 (\mod 5),\\ spt(7k+5)&\equiv 0 (\mod 7), \\ spt(13k+6)&\equiv 0 (\mod 13). \end{align} The modulo 13 congruence for $spt(n)$ is surprising, given that there is no similar elementary congruence modulo 13 for $p(n)$.

Recall that the rank of a Partition is defined to be the largest part minus the number of parts. The number of partitions of $n$ with rank $m$ is denoted $N(m,n)$. Atkin and Garvan introduced in [AG03] the moments of ranks: \[ N_j(n) = \sum_{m=-\infty}^{\infty}m^j N(m,n). \] A third result of Andrews in [A08] was to show that \begin{equation}\label{spteq4} spt(n) = np(n) −\frac{1}{2}N_2 (n). \end{equation} In [B08] Bringmann gave an asymptotic expansion for $N_2(n)$, which implies that \begin{equation}\label{spteq5} spt(n)\sim \frac{\sqrt{6n}p(n)}{\pi}. \end{equation} If the well-known asymptotic estimate for $p(n)$ is inserted in the last formula, it implies that \begin{equation}\label{spteq6} spt(n)\sim \frac{1}{\pi\sqrt{8n}}e^{\pi \sqrt{2n/3}}. \end{equation} Let \[ S(n)=\sum_{k=0}^{n}p(k). \] Hirschhorn made the conjecture, later proved by Eichhorn and Hirschhorn in [EH15], that \begin{equation}\label{spteq7} S(n − 1) < spt(n) < S(n). \end{equation}

[A08] G. E. Andrews, The number of smallest parts in the partitions of $n$, J. Reine Angew. Math. 624 (2008), 133–142.

[AG03] A. O. L. Atkin and F. G. Garvan, Relations between the ranks and cranks of partitions, Ramanujan J., 7 (2003), 343–366.

[B08] K. Bringmann, On the explicit construction of higher deformations of partition statistics. Duke Math. J. 144 (2008), no. 2, 195–233.

[EH15] D. A. Eichhorn, and M. D. Hirschhorn, Notes on the spt function of George E. Andrews. Ramanujan J. 38 (2015), no. 1, 17–34.

Back to the main Partitions page

Page created by Oideachas, LLC