The Network Of Knowledge

                Science   Technology   Engineering   Mathematics   History   Thought   Belief   The Modern World
                

                        Omnia Exeunt In Mysterium

Recurrence Formulae for Partition Functions

The fact that the generating function for the sequence $\{p(n)\}$ has the form \begin{equation}\label{partrecureq0} \sum_{n=0}^{\infty} p(n)q^n =\frac{1}{\prod_{k=1}^{\infty}1-q^k}, \text{ or }1=\left(\sum_{n=0}^{\infty} p(n)q^n \right)\left( \prod_{k=1}^{\infty}(1-q^k)\right ) \end{equation} together with the pentagonal number theorem \[ \prod_{k=1}^{\infty}1-q^k = \sum _{k=-\infty }^{\infty }\left(-1\right)^{k}q^{k\left(3k-1\right)/2}=1+\sum _{k=1}^{\infty }(-1)^{k}\left(q^{k(3k+1)/2}+q^{k(3k-1)/2}\right), \] imply that \begin{align}\label{partrecureq1} 1&=\left(\sum_{n=0}^{\infty} p(n)q^n \right)\left( \prod_{k=1}^{\infty}(1-q^k)\right )\\ &=\left(\sum_{n=0}^{\infty} p(n)q^n \right)\left( 1+\sum _{k=1}^{\infty }(-1)^{k}\left(q^{k(3k+1)/2}+q^{k(3k-1)/2}\right),\right )\notag\\ &=\sum_{n=0}^{\infty} p(n)q^n +\sum_{n=0}^{\infty} \sum_{k=1}^{\infty} p(n)(-1)^k\left(q^{n+k(3k+1)/2}+q^{n+k(3k-1)/2}\right) \notag\\ &=\sum_{n=0}^{\infty} p(n)q^n +\sum_{m=1}^{\infty}q^m \left(\sum_{k}(-1)^kp(m-k(3k+1)/2)+ \sum_{k}(-1)^kp(m-k(3k-1)/2)\right). \end{align} If $g_k = k(3k-1)/2,\,\forall \, k \in \mathbb{Z}$, then \begin{equation}\label{partrecureq2} 1=1+\sum_{m=1}^{\infty}q^m\left(\sum_{k}(-1)^kp(m-g_k) \right), \end{equation} where the inner sum is over all $k$ such that $m-g_k \geq 0$. Thus, for $m\geq 1$, \begin{equation}\label{partrecureq3} \sum_{k}(-1)^kp(m-g_k)=0, \text{ or } p(m) = -\sum{0< g_k\leq m}(-1)^kp(m-g_k). \end{equation} Since the sequence $\{g_k\}$ arranged in ascending order (corresponding to $k=0$, and then in pairs corresponding to $k=\pm 1, \pm 2, \pm3 , \dots$) has the form \[ 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, \] then for $m\geq 1$, \begin{equation}\label{partrecureq4} p(m)= p(m-1)+p(m-2)-p(m-5)-p(m-7)+p(m-12)+p(m-15)-p(m-22)-p(m-26)+\cdots , \end{equation} with the sum on the right continuing so long as $m-g_k\geq 0$. This is Euler's famous recurrence formula for the regular partition function $p(n)$.

As an example of this recurrence in action, consider the values in the following table (the values of $Q(n)$, which denotes the number of partitions into distinct parts, and $\sigma_1(n)$, the sum-of-divisors function, will be used below): \begin{equation}\label{ta1} \begin{array}{c|c|c|c} n & p(n) & \sigma_1(n) & Q(n)\\ \hline 0 & 1 & - & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 1 \\ 3 & 3 & 4 & 2 \\ 4 & 5 & 7 & 2 \\ 5 & 7 & 6 & 3 \\ 6 & 11 & 12 & 4 \\ 7 & 15 & 8 & 5 \\ 8 & 22 & 15 & 6 \\ 9 & 30 & 13 & 8 \\ 10 & 42 & 18 & 10 \\ 11 & 56 & 12 & 12 \\ 12 & 77 & 28 & 15 \\ 13 & 101 & 14 & 18 \\ 14 & 135 & 24 & 22 \\ 15 & 176 & 24 & 27 \\ 16 & 231 & 31 & 32 \\ 17 & 297 & 18 & 38 \\ 18 & 385 & 39 & 46 \\ 19 & 490 & 20 & 54 \\ 20 & 627 & 42 & 64 \\ \end{array}\\ \text{Table 1.} \end{equation} Then \begin{align*} p(20)&=p(20-1)+p(20-2)-p(20-5)-p(20-7)+p(20-12)+p(20-15)\\ &=p(19)+p(18)-p(15)-p(13)+p(8)+p(5)\\ &=490+385-176-101+22+77\\ &=627. \end{align*}

Other recurrences may be derived by considering other $q$-series identities. For example, if the first equation at \eqref{partrecureq0} is differentiated with respect to $q$ (and using logarithmic differentiation on the infinite product) and both sides are multiplied by $q$ then the following identity results: \begin{align}\label{partrecureq5} \sum_{n=1}^{\infty} n p(n)q^n &=\frac{1}{\prod_{k=1}^{\infty}1-q^k}\sum_{k=1}^{\infty}\frac{k q^k}{1-q^k}\\ &= \sum_{n=0}^{\infty} p(k)q^k \sum_{m=1}^{\infty} \sigma_1(m)q^m\notag\\ &=\sum_{n=1}^{\infty}\left(\sum_{k+m=n, m\geq 1} p(k)\sigma_1(m)\right )q^n\notag\\ &=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{n-1} p(k)\sigma_1(n-k)\right )q^n.\notag \end{align} Thus comparing coefficients of $q^n$ ob both sides and dividing by $n$ leads to the recurrence formula \begin{equation}\label{partrecureq6} p(n)=\frac{1}{n}\sum_{k=0}^{n-1} p(k)\sigma_1(n-k). \end{equation} Here $\sigma_1(m)$ denotes the sum of the positive divisors of the integer $m$, and the fact that \[ \sum_{m=1}^{\infty} \sigma_1(m)q^m = \sum_{k=1}^{\infty}\frac{k q^k}{1-q^k} \] has been used.

As an example of this recurrence it can be seen from Table 1. that \begin{align*} p(7)&=\frac{1}{7}\left [p(0)\sigma_1(7)+p(1)\sigma_1(6) + p(2)\sigma_1(5) + p(3)\sigma_1(4) + p(4) \sigma_1(3)+ p(5) \sigma_1(2)+ p(6) \sigma_1(1)\right ]\\ &=\frac{1}{7}\left [1\times 8+1\times 12 + 2\times 6 + 3\times 7 + 5 \times 4+ 7 \times 3+ 11 \times 1\right ]\\ &=\frac{1}{7}\times 105\\ &=15. \end{align*}

Another recurrence formula follows from the identity \begin{equation}\label{partrecureq7} \frac{1}{\prod_{k=1}^{\infty}1-q^k} = \frac{\prod_{k=1}^{\infty}1+q^k}{\prod_{k=1}^{\infty}1-q^{2k}}. \end{equation} Upon recalling that if $Q(m)$ denotes the number of partitions of $m$ into distinct parts, then \[ \sum_{m=0}^{\infty}Q(m)q^m=\prod_{k=1}^{\infty}1+q^k, \] and thus that \begin{align}\label{partrecureq8} \sum_{n=0}^{\infty} p(n)q^n &= \sum_{n=0}^{\infty} p(k)q^{2k} \sum_{m=1}^{\infty} Q(m)q^m\notag\\ &=\sum_{n=0}^{\infty}\left(\sum_{2k+m=n} p(k)Q(m)\right )q^n\notag\\ &=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\lfloor n/2 \rfloor} p(k)Q(n-2k)\right )q^n.\notag \end{align} Thus \begin{equation}\label{partrecureq9} p(n)=\sum_{k=0}^{\lfloor n/2 \rfloor} p(k)Q(n-2k). \end{equation} As an example of this third recurrence it can also be seen from Table 1. that \begin{align*} p(11)&=p(0)Q(11)+p(1)Q(9) + p(2)Q(7) + p(3)Q(5) + p(4) Q(3)+ p(5)Q(1)\\ &=1\times 12+1\times 8 + 2\times 5 + 3\times 3 + 5 \times 2+ 7 \times 1 \\ &=12+8+10+9+10+7\\ &=56. \end{align*}

Similar recursion formulae may be found for various restricted partition functions.

Back to the main Partitions page

Page created by Oideachas, LLC