Science Technology Engineering Mathematics History Thought Belief The Modern World
Recall that if $\lambda = (\lambda_1,\lambda_2,\dots \lambda_N)$ is a partition of the positive integer $n$, i.e. \begin{equation}\label{parteq1} n=\lambda_1+\lambda_2+\dots +\lambda_N, \end{equation} then the convention is to arrange the parts so that $\lambda_1\geq\lambda_2\geq\dots \geq\lambda_N\geq 1$.
For a given positive integer $N$ (the number of "rows" in the "lecture hall"), a lecture-hall partition of the integer $n$ is a collection of non-negative integers $\lambda =(\lambda_1,\lambda_2,\dots \lambda_N)$ such that \eqref{parteq1} holds, and \begin{equation}\label{lecparteq1} \frac{\lambda_1}{N}\geq\frac{\lambda_2}{N-1}\geq\dots \geq\frac{\lambda_N}{1}\geq 0. \end{equation} Note in particular that for lecture hall partitions, some of the $\lambda_i$ may be 0.
Let $\mathcal{L}_N$ denote the set of all such lecture hall partitions, i.e., \begin{equation}\label{Lneq1} \mathcal{L}_N:=\left \{(\lambda_1,\lambda_2,\dots \lambda_N)\bigg | \frac{\lambda_1}{N}\geq\frac{\lambda_2}{N-1}\geq\dots \geq\frac{\lambda_N}{1}\geq 0 \right \}, \end{equation} and for any positive integer, let $l_N(n)$ denote the number of lecture hall partitions of $n$ in $\mathcal{L}_N$: \begin{equation}\label{Lneq2} l_N(n):=\left |\left \{(\lambda_1,\lambda_2,\dots \lambda_N)\in \mathcal{L}_N\bigg | \lambda_1+\lambda_2+\dots +\lambda_N=n \right \}\right|. \end{equation}
Lecture hall partitions were introduced by Bousquet-Mélou and Eriksson in [1], where they showed that the generating function for the sequence $\{l_N(n)\}_{n=0}^{\infty}$ (by convention, $l_N(0)=1$) had closed form given by \begin{equation}\label{Lneq3} \sum_{n=0}^{\infty} l_N(n)q^n=\prod_{j=1}^{N}\frac{1}{1-q^{2j-1}}. \end{equation}
A survey of extensions and developments in the theory may be found in the paper [2] by Carla Savage.
[1] Mireille Bousquet-Mélou and Kimmo Eriksson. Lecture hall partitions. Ramanujan J., 1(1), 101–111,
1997.
[2] Carla D. Savage, The mathematics of lecture hall partitions. J. Combin. Theory Ser. A 144 (2016), 443–475.
Back to the main Partitions page