Science Technology Engineering Mathematics History Thought Belief The Modern World
The Gaussian polynomials, or \(q\)-binomial coefficients, are defined by
\begin{equation}\label{gnreq1}
g(n,r;q):=\left [
\begin{matrix}
n\\
r
\end{matrix}
\right ]
:=
\left [
\begin{matrix}
n\\
r
\end{matrix}
\right ]_q
:=
\begin{cases}
\displaystyle{
\frac{(q;q)_n}{(q;q)_r (q;q)_{n-r}}}, &0\leq r \leq n,\\
&\\
0, & \text{ otherwise.}
\end{cases}
\end{equation}
One connection with integer partitions is contained in the following theorem.
Theorem. For non-negative integers \(M\) and \(N\),
\begin{equation}\label{15partsgpolyseq}
g(M+N,M;q)=\left [
\begin{matrix}
M+N\\
M
\end{matrix}
\right ]=\sum_{n\geq 0}p(N,M,n)q^n,
\end{equation}
where \(p(N,M,n)\) denotes the number of partitions of the integer \(n\) into at most \(M\) parts, each \(\leq N\).
This implies the following corollary.
Corollary For non-negative integers \(M\) and \(N\),
\begin{equation}\label{15partsgpolyseq2}
\sum_{n\geq 0}p(N,M,n) =\left (
\begin{matrix}
M+N\\
M
\end{matrix}
\right ),
\end{equation}
where the right side is the usual binomial coefficient.
The identity in the above theorem may be used to give combinatorial proofs of the two special cases of the $q$-binomial theorem.
Corollary For each non-negative integer \(N\),
\begin{equation}\label{c141}
\sum_{m=0}^{N}
\left[
\begin{matrix}
N\\
m
\end{matrix}
\right]
z^mq^{m(m+1)/2}=(-zq;q)_{N},
\end{equation}
\begin{equation}\label{c142}
\sum_{m=0}^{\infty}q^m \left[
\begin{matrix}
N+m-1\\
m
\end{matrix}
\right]z^m=\frac{1}{(zq;q)_{N}},\,\,|z|< 1,\,\,|q| < 1.
\end{equation}
A proof may be found in [1], Section 7.3.
[1] Andrews, G. E.; Eriksson, K. (2004), Integer partitions. Cambridge University Press, Cambridge, x+141 pp
Back to the main Partitions page